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Abstract — We describe the third and final year of work on an
integrated system for intelligent compression and transmission
of copious data acquired by spaceborne instruments. Our sys-
tem contains a wavelet-based progressive image compression al-
gorithm, ROI-ICER, that accepts input priorities measuring the
relative importance of various “regions of interest” in the source
data, and organizes its output packets to reflect both the regional
priorities and the wavelet bit layer priorities. The output of the
data compression module is supervised by an intelligent buffer
manager that shuffles the prioritized packets from many differ-
ent source images and tries to select packets for transmission that
will maximize the total science value received on the ground.

We have developed new classification and prioritization algo-
rithms for a specialized application to identify regions of interest
from aerial images of wildfires. This application uses multispec-
tral image data with a handful of spectral bands. The classifi-
cation works by analyzing radiance ratios from long- and mid-
wavelength bands.

This year we have continued our research into onboard fea-
ture detection and compression with distributed classification al-
gorithms based on both onboard data and a ground database.
The distributed classification algorithms are based on joint op-
timization of two pruned tree functionals. We apply steerable
transforms to achieve rotational invariance, which enforces the
same rotation angle across transform levels and allows align-
ment of images by steering features. Performance is measured
as tradeoffs among bit rate, distortion, and complexity, using ex-
periments with complete feature vectors.

Our prioritized compression and buffer management soft-
ware has been ported to a web-accessible testbed, which allows
users at remote computers to run end-to-end simulations of sys-
tem capabilities using images and priority maps supplied by the
user. In the paper, we briefly describe the capabilities of the
testbed and its underlying software.

This work was funded by the ESTO Technology Program and performed
at the Jet Propulsion Laboratory, California Institute of Technology, at the
Signal and Image Processing Institute, Integrated Media Systems Center,
University of Southern California, and at the Computer Engineering Depart-
ment, University of California, Santa Cruz. Sang-Yong Lee is now at Texas
Instruments, Dallas, Texas. Baltasar Beferull-Lozano is now at the Swiss
Federal Institute of Technology-EPFL, Lausanne, Switzerland.

I. INTRODUCTION

We are in the final year of a three-year project to develop inte-
grated data compression and buffer management algorithms to max-
imize the science value of data returned from spacecraft instru-
ments [1, 2]. Our approach is to adapt existing progressive com-
pression algorithms to make use of identified “regions of interest”
(ROIs) in the data, and to develop buffer strategies for prioritizing,
storing, and delivering the most valuable compressed segments, and
later reconstituting the original data. Our system incorporates ROI
considerations across many images or different data types. The al-
gorithms are subject to practical limits on the onboard computer’s
speed, memory, and storage. In this paper we describe third-year
results in four general areas: (1) new classification and prioritiza-
tion algorithms for a specialized application to identify regions of
interest from aerial images of wildfires; (2) efficient onboard fea-
ture detection and compression with distributed classification algo-
rithms; (3) steerable transforms for identifying rotationally invariant
features; and (4) a web-accessible testbed for evaluating our ROI
compression and buffer management software in scenarios of inter-
est to scientist-users.

II. CLASSIFICATION AND PRIORITIZATION FOR AERIAL
WILDFIRE IMAGERY

Wildfire detection and monitoring via airborne sensor platforms and
real-time data telemetry is a promising and viable technology for
mitigating loss of life, property and natural habitat from wildland
fires. Early detection, continuous monitoring of fire fronts, and fast
deployment of fire fighting resources all rely on the ability to col-
lect, process and transmit data from airborne systems in real time.
Imagery data is collected in several spectral bands, each providing
useful information for fire analysis. Visible wavelengths are suitable
for monitoring smoke plumes and for distinguishing surface cultural
and vegetative features not obscured by smoke or clouds. Various in-
frared bands are suitable for analysis of vegetative composition, and
for analysis of distinct fire temperatures, while penetrating the asso-
ciated smoke column. The longest infrared bands can collect thermal
data on earth ambient temperatures and on the lower temperature soil
heating conditions behind fire fronts, as well as the minute tempera-
ture differences in pre-heating conditions.

Current implementations of multispectral aerial imaging systems
are severely hampered by the downlink data rate bottleneck of cur-
rent telemetry systems. Our ROI-prioritized compression system has
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the capability to provide a leap in the state-of-the-art for wildfire
monitoring, by enabling real-time fire management using aerial im-
ages of active wildfires. To this end, we developed new classification
and prioritization algorithms to identify regions of interest in aerial
wildfire images.

Our ROI-prioritized compression system uses a priority map to
identify the image areas that should be reproduced more faithfully
(by allocation of more bits in the compression process), versus ar-
eas with lower priority, for which a coarser rendering is acceptable.
Active fires, fire fronts and very hot surfaces should receive the high-
est priority, in order to provide a high resolution view of those crit-
ical areas to the fire fighting officials and rescue crews. Identify-
ing such image segments from thermal multispectral imagery is rel-
atively simple, by analyzing the ratio of radiance values in a long-
wavelength and in a mid-wavelength band. Figure 1 shows an exam-
ple of a priority map obtained by spectral ratioing. As shown in the
figure, our prioritized compression and buffer management system
uses this priority map to reconstruct the corresponding image with
greater fidelity in the regions identified as high-priority.

Fig. 1: Example of ROI-prioritized compression of aerial wildfire images.
The three color planes in the original image (a) correspond to three bands of
data (450 nm, 2.15 mm, and 8.5 mm) collected by an MAS imager flown over
an Arizona wildfire in July, 2000. The original data resolution is 16 bits/pixel
in each spectral band. The second image (b) is the priority map obtained
by band ratioing, with white (high priority) pixels indicating areas of high
temperature. This priority map was used for ROI compression to an average
rate of 0.68 bits per pixel per band (including overhead needed to specify the
priority map), as shown in the reconstructed image (c). The zoomed-in panels
at the bottom of the figure illustrate the effects of prioritized compression.
The black line superimposed on the right panel shows the boundary of the
high priority region. Pixels to the left of the line are in the high-priority
region, and are faithfully reproduced. Pixels to the right of the line belong to
the low-priority region, where artifacts due to compression are visible. The
uneven error distribution of ROI compression is also evident in image (d),
which shows the difference between the decompressed and the original image
(stretched by a factor of 8 to highlight errors). Darker areas indicate smaller
reconstruction error, and mostly correspond to high priority regions.

More sophisticated prioritization mechanisms may also be re-
quired for effective use of the compressed images. Firefighters and
wildfire managers would like to see not only the burning or hot ar-
eas, but also contextual neighboring portions of the scene. Contex-

tual areas should also be given high, or at least intermediate, priority.
Prominent landmarks such as roads or buildings should be preserved
in order to facilitate scene georectification and registration. These
landmarks can be extracted (and given high priority) by standard im-
age processing operations such as edge, line and corner detectors.
Our ROI-prioritized compression system accepts priority maps with
multiple prioritization levels, and it is well equipped to handle inter-
mediate priorities assigned to important contextual features.

III. EFFICIENT FEATURE COMPRESSION FOR
DISTRIBUTED (REMOTE) IMAGE CLASSIFICATION

We continued our research into onboard feature detection and
compression with distributed classification algorithms based on both
onboard data and a ground database. We represent regions of the
captured image by a feature set and compress this feature set. By
doing this we are able to establish a prioritization feedback loop be-
tween spacecraft and ground. Features are compressed and transmit-
ted through the downlink to the ground. A priority is assigned to
each region by performing a search in the database using the com-
pressed features. Figure 2 shows such a remote image classification
system. By doing this, we are able to reduce the onboard storage
requirement and processing complexity. Since the database and clas-
sifier are kept on the ground where memory is cheap, we can obtain
accurate priority assignments based on the entire history of received
information.
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Fig. 2: Priority feedback in remote image classification.

We assume a vector model for image classification. Each image
is represented by a feature vector X ∈ RN . Similarity matching is
performed between the query vector Q and each of the entries X in
the database to predict the classification label Y of the query. One
commonly used matching method is the K -NN (K Nearest Neigh-
bor) classifier [6] where K closest objects to the query vector are
searched based on some distance measure d(Q, X), then the major-
ity class in these K retrieved objects is taken as the predicted classi-
fication label of the query vector Q. The K -NN method gained its
popularity in the field of pattern recognition due to its simplicity and
asymptotic property that it achieves the minimum Bayesian risk as
the training set becomes arbitrarily large.

Vector quantization (VQ) is a natural way to compress the feature
vector under this scenario because the classifier operates on vectors.
But the complexity of VQ is exponential with the vector dimension.
This is undesirable in our application since the onboard processing



power is limited and the dimensionality of the feature vector is usu-
ally very high (up to hundreds). This motivates us to look for simpler
coding schemes. The performance of these schemes is measured in
terms of tradeoffs among bit rate, distortion, and complexity, using
experiments with complete feature vectors.

A. ENTROPY- AND COMPLEXITY-CONSTRAINED CLASSIFIED

QUANTIZER DESIGN

In previous work by Xie and Ortega [17, 2], we addressed the design
of a classified quantizer to optimally trade off rate, distortion and
complexity. Figure 3 shows a block diagram of a classified encoding
system. We assume simple uniform scalar quantization and separate
entropy coding of each element of the vector. A Decision Tree Clas-
sifier (DTC) is applied to classify the compressed data. We assume
that the pre-classifier is a pruned subtree of the full decision tree.

The Generalized Breiman, Freidman, Olshen, and Stone (G-
BFOS) algorithm [4, 5] is employed to jointly search for the opti-
mal pre-classifier and quantization parameters for each of the classes.
The optimization is based not only on the rate budget, but also on a
coding complexity constraint. The goal is to find the optimal sub-

X̂X encoder  α

classifier  S

α1 α2 αM...

Fig. 3: Classified encoding system. Separate encoders {αi } are designed to
exploit the local statistics of the data.

tree S∗ � T and the set of stepsizes {�∗
i, j , j = 1, ..., N } for each

class i , such that the overall distortion is minimized subject to the
rate budget Rb and complexity constraint Cb.

D∗ = min
S∗,{�∗

i, j }

˜|S|∑
i=1

Pi × Di (�i,1, �i,2, ..., �i,N ) (1)

such that R(S, {�i, j }) ≤ Rb and C(S) ≤ Cb

Instead of solving the constrained problem (1), we use Lagrange
multipliers and solve the dual problem:

min
S∗ [ min

{�∗
i, j }

{D(S, {�i, j }) + λ × R(S, {�i, j }) + µ × C(S)}] (2)

Now we need to find the optimal multipliers λ and µ such that the
rate and complexity constraints are satisfied with equality. We devel-
oped a nested optimization algorithm to jointly search for the optimal
subtree S∗ and the set of quantization stepsizes {�i, j } for a given
rate budget and complexity constraint. The basic idea is: Initialize
the multiplier λ, then for this fixed multiplier, prune the tree until
the complexity constraint Cb is satisfied. With the resulting operat-
ing rate R, adjust the multiplier λ using a bisection method [7] and

complexity

ra
te

λ = ∞

λ*

λnew

λinitialRnew

Rb

Cb

Rinitial

λ = 0

. . .

Fig. 4: We start with multiplier λinitial and prune the tree until Cb is satisfied.
Then update λ to λnew using the bisection method. Repeat the process until
Rb is satisfied.

repeat the process. Figure 4 gives a geometric interpretation of this
nested optimization. Pruning with fixed λ finds (S∗(λ), {�∗

i (λ)})
with complexity constraint Cb satisfied. Adjusting λ and pruning
until the rate meets the constraint Rb gives us the optimal point with
both constraints satisfied.

We performed texture classification [8] based on a 1-NN classi-
fication rule using compressed data. Figure 5 shows that a lower
classification error rate was achieved by using the classified encoder
instead of a single encoder without pre-classification.
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Fig. 5: Classification performance for encoders with and without pre-
classification.

Experimental results on natural images with complete feature
vectors are shown in Figs. 6 and 7. In this experiment, we tested
15 classes1 from the Corel image database [9], with 100 images for
each class. We used 80% of the images in each class for training

1The classes include Flowers II, Exotic cars, Sunrise and sunsets, Reli-
gious stained glass, Ski scenes, Painting, English country garden, Land of the
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0 5 10 15 20 25 30 35 40 45 50

20

30

40

50

60

70

recall (%)

pr
ec

is
io

n 
(%

)

classified
single

classified
single

classified
single

encoder

14.8973
14.9304

34.5469
34.3906

96.9996
99.0764

bits/vector

Fig. 7: Retrieval precision versus recall, comparing encoders with and with-
out pre-classification at different operating rates.

and 20% for testing. The feature vectors consist of color histogram,
texture histogram and edge histogram in La∗b∗ color space [10].
The dimensionality of the feature vectors in our experiment was 99.
We performed 20-NN and 50-NN similarity searching using l1 norm
as the distance measure. The quality of the retrieval result is mea-
sured by two quantities: precision and recall. Precision is the per-
centage of objects in the retrieved set that are relevant to the query
image; it measures the purity of the retrieval. Recall is a measure-
ment of completeness of the retrieval, computed as the percentage
of retrieved relevant objects in the total relevant set in the database.
Again we see that substantial gain is achieved by employing the clas-
sified encoder, especially at low operating bit rates. At bit rate around
0.2 bits/sample, our proposed encoding scheme achieves about 7%
higher retrieval precision than a single encoder.

B. DISCRIMINANT ANALYSIS FOR TRANSFORM CODING2

State-of-the-art source coding yields a good compromise between
complexity and coding performance. The motivating principle of
transform coding is that simple coding is more effective in the trans-
form domain. By simple coding we mean scalar quantization fol-
lowed by entropy coding of each dimension separately.

pyramids, Mayan and Aztec ruins, Divers and diving, Glacier and mountains,
Owls, Arabian horses, Coasts and Fireworks.

2Work also submitted in part for publication in [18].

Without loss of generality, we assume a linear transform T fol-
lowed by a bank of uniform quantizers {�i }. The quantization in-
dexes of each dimension are entropy-coded independently. We seek
the optimal linear transform T ∗ and quantization stepsizes {�∗

i },
such that the probability of classification error Pe based on the com-
pressed data is minimized.

min
T ∗,{�i }

Pe(X̂) such that R ≤ Rb (3)

Unfortunately, an explicit mathematical expression for the probabil-
ity of error has is not available except for a very few special cases. So
here we consider an alternative class separability criterion called the
scatter measure [11]. The scatter measure is a ratio S−1

w Sb between
the within-class scatter Sw and the between-class scatter Sb:

Sw =
L∑

i=1

Pi �i (4)

Sb =
L∑

i=1

Pi (Mi − M)(Mi − M)t

where �i and Mi are the covariance matrix and mean vector, respec-
tively, for the i th class, Pi is its a priori probability, and M is the
overall mean vector.

Linear discriminant analysis (LDA) is a method used in pattern
recognition to solve the “curse-of-dimensionality” problem. Classi-
fication procedures that are analytically or computationally manage-
able in low-dimensional spaces can become totally impractical when
the dimensionality reaches 50 or higher. LDA looks for an optimal
linear transform such that most of the class separability information
is preserved in a small number of dimensions in the transform do-
main. Thus, classes become well separated after projecting to the
most discriminant directions, and the representation entropy of the
class separability information is reduced in the LDA transform do-
main as compared to the original domain. This nice property enables
efficient quantization.

It was shown in [11] that the optimal transform T ∗ for “com-
pacting” the class discrimination information measured by the scatter
matrix S−1

w Sb is a matrix whose columns consist of the eigenvectors
of S−1

w Sb. The intuition here is that, to obtain good class separation,
different classes should be far apart from each other (corresponding
to large Sb) while at the same time samples belonging to the same
class should be closely clustered together (corresponding to small
Sw). Figure 8 shows the discriminating power of projecting feature
vectors of two Brodatz texture classes D1 and D2 onto the eigen-
system of the scatter matrix S−1

w Sb. We see that most of the class
discrimination information is preserved in the direction that corre-
sponds to the eigenvector with the largest eigenvalue.

We performed a linear discriminant transform, followed by uni-
form scalar quantization with a greedy bit allocation. The greedy
bit allocation starts with finest quantization at each dimension, and
then a dimension chosen for coarser quantization such that the mag-
nitude of the slope of the increase in class entropy to the decrease
in entropy rate is minimized. Let αt = {�t

i , i = 1, ..., N } de-
note the set of stepsizes at time t , and At be the resulting parti-
tion of the sample space using quantizer αt . At time t + 1, let
αt+1

k = {�t
1, �t

2, ..., �t+1
k , ..., �t

N } be the quantization with a
larger stepsize applied to the kth dimension, leaving the stepsizes
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Fig. 8: Histograms of features projected onto the eigensystem of the scatter
matrix.

on the other dimensions unchanged. We denote the resulting parti-
tion by At+1

k . The entropy of the class distribution for a partition A
is computed as:

H(A) =
∑
c∈A

Pr(c) × H(c) (5)

H(c) = −
C∑

i=1

pi × log(pi ) (6)

where pi is the probability of class i in partition cell c, and C is
the total number of classes. Class entropy is a measure of purity of
the partition. We need to find at time t + 1 the dimension k∗ along
which to apply a coarser quantization as compared to time t , such

that
H(At+1

k )−H(At )

R(At )−R(At+1
k )

is minimized. Here R(A) is the entropy rate

associated with partition A. This process is continued until the rate
constraint is satisfied.

Applying the above quantization scheme to a four-class (D1, D2,
D3, D4) Brodatz texture example, we show in Fig. 9 the retrieval
performance of the LDA transform coding scheme compared with
traditional encoding where bit allocation is performed in the origi-
nal domain minimizing mean squared error (MSE). From the figure
we see clearly that the proposed LDA compression scheme achieves
more accurate retrieval.

IV. STEERABLE TRANSFORMS FOR IDENTIFYING
ROTATION-INVARIANT FEATURES3

Texture information is useful for image classification, and sev-
eral approaches have been proposed to extract texture-related fea-
tures based on various linear transforms, such as the wavelet trans-
form. Most well-known texture feature extraction methods measure
the energies of the subbands obtained from a wavelet transform as
texture discriminating features. However, one drawback of using
critically sampled transforms for this purpose is that the features are
not rotation- or shift-invariant. We address the problem of designing
efficient rotation-invariant texture features and demonstrate their use

3Work also submitted in part for publication in [19].
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in the context of decision tree classifier. Our goal here is to enable
locating similar images in the database, even if the captured image
is rotated with respect to those most similar to it in the database.
We apply steerable transforms to achieve rotational invariance. This
enforces the same rotation angle across transform levels and allows
alignment of images by steering features.

Two main previous approaches have been proposed for rotation-
invariant texture matching. In the first one [12], a stochastic model
(hidden Markov model) is assumed for features derived from a
wavelet transform, and the training is performed using samples with
different orientations and identified as belonging to the same class.
In the second one [13], given the outputs of a transform, some spe-
cific rotation-invariant quantities are defined. In our work, instead,
we achieve rotation-invariance by using the concept of angular align-
ment, i.e., the features obtained from two images are aligned before
being compared. To achieve this, we define a set of features which
are steerable in the sense that, given the features of an image sample,
it is possible to obtain the features corresponding to any rotated ver-
sion of it. These features are obtained from the subbands of a steer-
able pyramid [14, 15]. We also define a new similarity measurement
which measures the distance between two feature vectors only after
they have been aligned. This angular alignment can be performed
efficiently using simple constrained steepest descent algorithms. Al-
though several features obtained from a steerable pyramid have been
proposed in previous work [16], the property of achieving steerabil-
ity in the feature space, which is essential for the angular alignment,
has not been considered.

One drawback of steerable transforms in many image representa-
tion applications comes from the fact that they are oversampled and
thus result in a significant storage penalty with respect to critically
sampled transforms. We show that steerable features can be effi-
ciently compressed using the classified encoding system proposed by
Xie and Ortega [17], to demonstrate that no rate penalty exists and
that features based on steerable representations outperform wavelet-
based features when operating at the same rate.

In order to decrease the complexity of the retrieval, a Decision
Tree Classifier (DTC) is often used in practical applications. Im-
ages having similar features are clustered together in the nodes of
the tree-structured classifier. We show how the rotation-invariance
can be incorporated in the DTC-based retrieval by performing an-
gular alignment at each node in the tree and defining an appropriate
distance between an image and a tree node, which ensures that a



best-first-search method works correctly. Our experimental results
show that our method achieves a substantial gain in retrieval preci-
sion versus rate compared to a retrieval system based on a wavelet
transform.

Section A below describes the feature extraction process, and
Section B describes the basic similarity measurement, which is the
main novelty of our work. In Section C, we briefly describe the
quantization schemes that are considered and also the DTC-based
retrieval system incorporating the angular alignment. Finally, Sec-
tion D shows some experimental results.

A. FEATURE EXTRACTION

Since we are interested in achieving rotation invariance, the feature
extraction we consider is based on the subbands obtained from a
steerable pyramid [14]. We then should choose features that are as
“steerable” as possible, that is, given the features of an image ori-
ented at an angle φ, it should be possible to obtain the features cor-
responding to the same image but oriented at an angle φ′, by direct
manipulation of the features at angle φ, i.e., without actually having
to recalculate the features after rotating the image. In our work, we
try to achieve good retrieval performance using energy-based fea-
tures which are simple to manipulate.

Let c(xo, φ) represent the value of a transform coefficient corre-
sponding to the output of a rotated steerable filter with orientation
φ for a certain image spatial location xo. In a steerable pyramid
with J basic orientations and L levels, at each level l, given the J
basic coefficients {cl (xo, φ1), cl (xo, φ2), . . . , cl (xo, φJ )}, the trans-
form coefficient cl (xo, φ) for an angle (orientation) φ of that same
spatial location will be given by:

cl (xo, φ) =
J∑

i=1

αi (φ)cl (xo, φi ) ∀φ, l = 1, . . . , L (7)

where {α1(φ), α2(φ), . . . , αJ (φ)} is the set of J steering functions
which can be used for (exact) interpolation of a transform coefficient
for any angle φ and at any level l = 1, . . . , L .

Let El (φ) represent the average energy of a subband oriented at
an arbitrary angle φ in a level l, that is, El (φ) is given by El (φ) =(

1
Nl

) ∑Nl
k=1(cl (xk , φ))2, where Nl is the number of pixels of each of

the subbands in level l and the subscript k goes through all the spatial
locations of the subband. It is very simple to show that El (φ) can be
calculated from the energies (sampled autocorrelations) of the basic
J subbands and all the sampled cross-correlations between each pair
of basic subbands:

El (φ) = αT (φ)Clα(φ), α(φ) = (α1(φ) · · · αJ (φ))T (8)

where Cl is the (symmetric) sampled correlation matrix with el-

ements Cl
i j =

(
1
Nl

) ∑Nl
k=1 cl (xk , φi )c

l (xk , φ j ) = Cl
ji , l =

1, . . . , L . Each diagonal element of Cl corresponds to Cl
ii = El (φi ),

that is, the average energy at the basic angle φi , while the off-
diagonal elements correspond to sampled cross-correlations between
the subbands corresponding to each pair of basic angles.

Notice that since c(xo, φ+π) = −c(xo, φ), clearly, El (φ+π) =
El (φ), that is, El (φ) is a periodic function with period equal to π .
Given a perfectly homogeneous image I with energy profile El

I (φ)

at level l, if this image is rotated counter-clockwise by an angle θ ,
obtaining an image Iθ , then, we will have that El

Iθ
(φ) = El

I (φ − θ),
that is, a rotation of an image corresponds to a shifted version of the
energy profile.

Based on this we choose the correlation matrices {Cl }L
l=1 as

the energy-based texture features in our system. Notice that since
each matrix Cl is symmetric, the total number of features will be
J (J + 1)L/2. Therefore, the interdependencies between different
orientations in terms of cross-correlations are necessary in order to
characterize the energy profile of an arbitrary rotation of a given im-
age. We do not consider the use of the energy of the low-pass residual
subband as a feature in our proposed system. Obviously, as the num-
ber J of basic orientations increases, the resolution in angle (angular
bandwidth of basic filters) increases and the energy profile El (φ)

will be therefore more accurate, but on the other hand, the number
of raw features may become substantially larger than in the case of a
wavelet-based texture representation.

B. SIMILARITY MEASUREMENT

In the similarity measurement, we are interested in making use of
the steerability property present in the features in order to identify
equivalent features, where equivalency means having different ro-
tated versions of a unique image.

The next proposition shows that the sampled correlation matrix
Cl

I for an image at a given level l is related in a simple way to

the sampled correlation matrix Cl
Iθ

for the same image but rotated
counter-clockwise by an angle θ .

Proposition 1 Given a steerable representation with J basic angles,
the correlation matrices Cl

Iθ
and Cl

I , both evaluated with respect to
the same set of basic angles {φ1, . . . , φJ }, are related as follows:

Cl
Iθ

= R(θ)Cl
I RT (θ),

R(θ) =




α1(φ1 − θ) α2(φ1 − θ) · · · αJ (φ1 − θ)

α1(φ2 − θ) α2(φ2 − θ) · · · αJ (φ2 − θ)

...
...

...
...

α1(φJ − θ) α2(φJ − θ) · · · αJ (φJ − θ)




(9)
In the particular case where the J basic angles are taken to be
equally spaced, then R(θ) becomes an orthogonal matrix for any
θ , and therefore, Cl

Iθ
and Cl

I become orthogonally equivalent.

Proof: The proof is given in [20].
This property holds for every level independently. However, no-

tice that when an image is rotated, all the decomposition levels will
be equally rotated. This means that given an image I and a rotated
version Iθ of it, the Frobenius norms:

‖Cl
I − R(−θ)Cl

Iθ
RT (−θ)‖F , l = 1, . . . , L

(same rotation angle for all the levels), will tend to be small.
Taking all this into account, the similarity measurement

D(I1, I2) between 2 different images I1 and I2 that we propose is
the following:

D(I1, I2) = min
θ

(
L∑

l=1

‖Cl
I1

− R(−θ)Cl
I2

RT (−θ)‖F

)
(10)

Clearly, those levels containing more energy will influence more in
the minimization of (10) and those levels with small energy will have
little influence.

Notice that when I1 and I2 are two rotated versions of the same
image, the angle θ∗ for which the minimum is achieved in (10)



should be close to the relative angle between I1 and I2, that is, the
angle one needs to rotate (clockwise) I1 in order to get I2. Thus,
one way to see the goodness of our similarity measurement (10)
is to check whether the estimated angle θ∗ is actually close to the
real relative angle between two physically rotated versions of the
same image. Moreover, it might also be useful in some practical
applications to find out approximately this relative angle. Fig. 10
illustrates this by showing the function D(θ) = ∑L

l=1 ‖Cl
I1

−
R(−θ)Cl

I2
RT (−θ)‖F , for the case where I1 and I2 are rotated ver-

sions of “bark” texture from the Brodatz set [21].
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Fig. 10: (a) “bark” physically rotated at 60 and 120 degrees; (b) D(θ) for
J = 2, 4, 6. Notice how in all three cases, the minimum is achieved for
θ = 60 degrees, which is the exact relative angle between the two texture
image samples.

As explained below, this angular alignment has to be performed
many times in the retrieval process and thus it is important to devise
fast algorithms to find the minimizing angle θ∗ in (10). In [20], it is
shown that θ∗ can be found analytically for J = 2, and for J > 2 it is
possible to design low-complexity constrained steepest descent algo-
rithms. This is because it can be proved that the number of stationary
points of the function being minimized in (10) is upper bounded and,
at the same time, the angular distance between any two contiguous
stationary points is lower bounded [20], making it simple to search
for these points in a few non-overlapping angular intervals.

C. QUANTIZATION AND RETRIEVAL PROCESS

We tested our proposed scheme when the feature vectors are quan-
tized using a set of scalar quantizers with three different quantization
algorithms: (a) simple uniform quantization (same stepsize); (b) non-
uniform quantization with optimal bit allocation in a rate-distortion
sense [22]; (c) classified quantization optimized in a rate-distortion-
complexity sense, as proposed by Xie and Ortega [17] and depicted
earlier in Fig. 3.

The retrieval process is always performed with the DTC T using
the best-first-search and branch-and-bound.4 Let D(Q, t) denote the
distance of the query Q with node t in the tree. In order to ensure
that this search algorithm finds the correct closest matches, we need

4This algorithm has a complexity of O(log M), where M is the number
of feature vectors in the database, as compared to O(M) in a linear search.

to define a distance D(Q, t) satisfying the property that D(Q, t) is a
lower bound of the distances of Q to all the images at node t , and we
need to take into account the angular alignment process. Notice that:

D(Q, I ) = min
θ

d(Qθ , I ) (11)

≥ min
θ

d(Qθ , Ic) − d(Ic, I ) (triangle inequality)

≥ min
θ

d(Qθ , Ic) − R(t) (upper bound)

where Ic is the centroid at node t, R(t) is the radius of node t given
by R(t) = maxI∈t d(Ic, I ) and d(Qθ , I ) is given by the expression
inside the parentheses in (10). Thus, defining D(Q, t) as D(Q, t) =
minθ d(Qθ , Ic)−R(t), then, it is guaranteed that the best-first-search
method will find the correct closest match.

Thus, we see that a crucial differential point in our work is that in
the retrieval process using the DTC, at each node of the tree, align-
ments between the query (quantized) feature vector and each of the
two representing vectors (corresponding to the two branches) have to
be performed using (10). After these two alignments, two distance
measurements are performed and a branch is chosen.

D. EXPERIMENTAL RESULTS

We evaluated the performance of our steerable transform applied to
the Brodatz texture images [8] and compared it to that of a standard
wavelet transform. The features we considered in the wavelet case
are also correlation matrices obtained from the corresponding four
wavelet subbands.

We used two collections of texture samples of size 128×128. The
first collection, which forms the non-rotated image database, is ob-
tained by partitioning each of the 13 Brodatz (512×512) non-rotated
texture images [21] into 16 non-overlapping texture subimages of
size 128 × 128 with a total of 208 texture samples. This set is used
in training of the DTC for retrieval. The second collection, which
forms the rotated set, is obtained by partitioning (for each of the 13
texture classes) 4 large texture images oriented at 30, 60, 90 and 120
degrees also into non-overlapping subimages of size 128 × 128 and
taking the 4 central subimages. In this way, in the second database,
there are also 16 textures for each class and therefore, also the same
total number of 208 textures. A query texture sample is taken from
the rotated set and the feature vector is extracted and quantized using
the three quantization schemes described in Section C. We assume
that each quantized component of the feature vector is independently
entropy coded. The M = 16 closest textures from the non-rotated set
are obtained and the average retrieval precision over all the rotated
texture samples is measured.

Without compressing the features, the average retrieval precision
for the steerable transform is 67.03% and 66.55% for J = 2 and
J = 4, respectively,, whereas for the wavelet transform the aver-
age precision is only 41.85%. Fig. 11 shows the retrieval precision
of compressed steerable feature vectors for J = 2 and J = 4. We
see clearly that the classified quantizer achieves the best performance
among the three quantization schemes. By using the classified quan-
tizer with expected tree length l = 2 (complexity constraint), the re-
trieval performance degrades very gracefully. Even with the bit rate
reduced to around 1 bit/element, we can still achieve nearly the same
precision as that obtained by using uncompressed features. Fig. 12
shows a comparison of the retrieval precision with compressed fea-
tures between the steerable transform with J = 4 and a standard
wavelet transform. Our reason for comparing these two cases is that
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Fig. 11: Average Retrieval Performance using a 3 level steerable pyramid for
the three different quantization algorithms: (a) J = 2 and (b) J = 4.

the dimension of the feature vector is the same for both (N = 48),
so they will yield comparable bit rates. We see that the steerable
transform achieves much better retrieval precision than the wavelet
transform over all bit rates.

We also illustrate the reduction in retrieval complexity obtained
by employing a DTC instead of a linear search, by tallying the num-
ber of distance computations that need to be performed to find the
M = 16 closest matches, Instead of 208 distance computations in
the case of linear search, the DTC requires on average 121.97 dis-
tance computations for J = 2 and 39.82 for J = 4.

V. THE WEB-ACCESSIBLE SOFTWARE TESTBED

Our prioritized compression and buffer management software has
been ported to a web-accessible testbed,5 which allows users at re-
mote computers to run end-to-end simulations of system capabilities
using images and priority maps supplied by the user. The web site
offers a front-end interface to the ROI-ICER simulator developed at
JPL. Here we briefly describe the capabilities of the testbed and its
underlying software.

At its core, our data compression system contains a wavelet-based
progressive image compression algorithm, ICER [3], that is being

5Contact the authors for access privileges.
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Fig. 12: Comparison between a standard 3 level wavelet pyramid (’daub16’
filter bank) and a 3 level steerable pyramid with J = 4 for the three different
quantization algorithms.

used on the Mars Exploration Rover (MER) mission. The ICER al-
gorithm applies a wavelet decomposition and prioritizes the com-
pressed bit layers from the wavelet subbands so as to progressively
transmit the layer that gives the largest estimated improvement in
image quality per transmitted bit. Our modified version, ROI-ICER,
accepts additional input priorities in the form of a data prioritization
map that gives the relative importance of different regions of inter-
est in the source data. Then ROI-ICER produces output packets of
compressed data along with priority labels that reflect both the input
regional priorities and the wavelet bit layer priorities.

The output of the data compression module is supervised by an in-
telligent buffer manager that receives prioritized packets from many
different source images and tries to select packets for transmission
that will maximize the total science value received on the ground.
Just as importantly, it attempts to discard only the least valuable
packets when the buffer overflows (which is inevitable if the aver-
age data transmission rate is lower than the average data collection
rate). Our buffer manager uses a simple form of double-valued prior-
itization: admissions and discards are determined by priorities estab-
lished by ROI-ICER, while transmissions are first-in, first out (FIFO)
among packets that survive the admission/discard process during
their time of residency in the buffer. The FIFO protocol for trans-
missions keeps intact the chains of compressed data packets that are
later used to progressively reconstruct each image or image segment,
yet the prioritized decisions on admissions and discards ensure that
the scarce downlink resource is not clogged by less valuable data.
Using a FIFO transmission priority eliminates the need to unshuffle
the packets received on the ground, because successive (truncated)
packet chains can be used to reconstruct the source images in the
same order in which they were acquired (but to different levels of
distortion depending on how many packets from each chain survived
the prioritized admission/discard process).

The operation of the testbed simulator is as follows. The user
chooses a set of images and classification maps, either samples pro-
vided on the web page or files uploaded to the server by the user.6

The user may declare that the classification maps should be directly
interpreted as priority maps, or alternatively may specify a table or
rule defining the priority of each class identified in the classification

6Users who upload their own images and classification maps should fol-
low the instructions on the web site.



maps. The user also specifies the capacity of the prioritized buffer
in kilobytes, the average rate at which image data arrive in bytes per
second, and the downlink capacity of the channel. The order in which
images are presented to the simulator can be determined by the user
or chosen randomly by the server. The simulator’s operations on
each image in the submitted sequence are outlined below:

1. During the course of simulation, each arriving 3-color im-
age first undergoes a Y-Cr-Cb transform to facilitate efficient
compression. The three components are independently com-
pressed using ROI-ICER.

2. The user’s classification map is transformed into a priority
map.

3. The priorities contained in the priority map are sent along
with the image component (Y, Cr, or Cb) to the prioritized
ICER compression system. The image component is com-
pressed and packetized, and each packet is tagged with a pri-
ority value from the compressor. High priority regions are
typically mapped to higher priority packets while lower pri-
ority regions are typically mapped to lower priority packets.
The result is three separate packet streams for Y, Cr, and Cb.

4. The priority map, which is needed for both compression and
decompression, is separately compressed and packetized at
the highest priority.

5. The four packet streams, from the priority map and from the
Y, Cr, and Cb components, are sent to the prioritized buffer
system. The prioritized FIFO buffer maintains packet order-
ing while dropping or rejecting low priority packets when the
buffer overflows and transmitting the surviving higher priority
packets at the rate permitted by the downlink channel capac-
ity.

6. The simulator reconstructs images based upon the packets that
are successfully transmitted from the prioritized FIFO buffer.
Given the original and reconstructed image, a difference im-
age is also created and the pSNR evaluated to permit users to
evaluate overall performance.

After the simulation finishes, the user clicks a link to view the results
page. A series of image thumbnails is displayed along with the re-
sulting overall pSNR for each image. By clicking on the thumbnail,
the user can go to the image’s page of results. This page displays:

1. The original, received, and difference images. There are links
that permit a user to download these images in PPM format
for further review and analysis.

2. The pSNR for each regional priority level. This permits the
user to evaluate the performance of the system according to
regional priorities. This is in addition to overall pSNR.

3. The number of bits per pixel for each of four data streams: pri-
ority map, Y component, Cr component, and Cb component.
In addition, the overall number of bits per pixel received and
used in reconstruction is given to permit evaluation of overall
performance.
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